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SUMMARY

This paper gives an overview of the eigenvalue problems encountered in areas of data mining that are related to
dimension reduction. Given some input high-dimensional data, the goal of dimension reduction is to map them to
a low-dimensional space such that certain properties of the original data are preserved. Optimizing these properties
among the reduced data can be typically posed as a trace optimization problem that leads to an eigenvalue problem.
There is a rich variety of such problems and the goal of this paper is to unravel relations between them as well as
to discuss effective solution techniques. First, we make a distinction between projective methods that determine an
explicit linear mapping from the high-dimensional space to the low-dimensional space, and nonlinear methods where
the mapping between the two is nonlinear and implicit. Then, we show that all of the eigenvalue problems solved
in the context of explicit linear projections can be viewed as the projected analogues of the nonlinear or implicit
projections. We also discuss kernels as a means of unifying linear and nonlinear methods and revisit some of the
equivalences between methods established in this way. Finally, we provide some illustrative examples to showcase the
behavior and the particular characteristics of the various dimension reduction techniques on real world data sets.
Copyright c© 200 John Wiley & Sons, Ltd.
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1. Introduction

The term ‘data mining’ refers to a broad discipline which includes such diverse areas as machine learning,
data analysis, information retrieval, pattern recognition, and web-searching, to list just a few. The widespread
use of linear algebra techniques in many sub-areas of data mining is remarkable. A prototypical area of data
mining where numerical linear algebra techniques play a crucial role is that of dimension reduction which is
the focus of this study. Dimension reduction is ubiquitous in applications ranging from pattern recognition
and learning [50] to the unrelated fields of graph drawing [26, 32], materials research [13, 11], and magnetism
[42].

The problem we have is to map some high-dimensional data to a low-dimensional space for various reasons,
such as visualizing it, reducing the effect of noise, or reducing computational cost when working with the
data. Here, by mapping we mean that for each sample xi from the high-dimensional space will find a low-
dimensional version which we call yi.

To be more specific, we are given a data matrix

X = [x1, . . . , xn] ∈ Rm×n, (1)
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Figure 1. Left: Illustration of a certain mapping, in this trivial case from R3 to R2. Right: A sample
of 12 digit pictures [73].

for which we wish to find a low-dimensional analogue

Y = [y1, . . . , yn] ∈ Rd×n, (2)

with d� m, which is a faithful representation of X in some sense. Formally, we are seeking a mapping :

Ψ : x ∈ Rm −→ y = Ψ(x) ∈ Rd.

Here x belongs to Rm where m can be in the thousands or millions. Each of the n columns of the matrix
X is a sample from this space, and n in turn can be in the thousands or millions. The mapping Ψ is often
not explicit. The only requirement is to be able to apply it to those data items in X, i.e., to columns of
X. In other words all we need is to find a representative yi in Rd for each sample xi. An illustration is
shown on the left side of Figure 1. A question that is often asked is: which of the two dimensions of X is
typically larger? The answer is that both cases occur and are important. The case when n ≤ m is called
the undersampled case and it will play an important role later in the discussion. One of the key issues in
searching for a mapping Ψ is to specify what we mean by the requirement that Y be a faithful representation
of X. In most cases, we will specify this by using a certain distance on X and on Y and by asking that
‘closeness’ be preserved with respect to this distance.

As an illustration, consider the problem of recognizing pictures of handwritten digits. This is an important
problem and it provides a simple illustration to the basic ideas. Twelve sample pictures are shown on the
right side of Figure 1. Each of these pictures is a 20 × 16 array of gray-level pixels∗. The twelve samples
shown above are extracted (randomly) from a bigger data set containing actually n = 390 such pictures,
which is publicly available [73]. This is a relatively small set of digit pictures compared to data sets arising
in realistic situations. Whenever we deal with image data, it is common to ‘vectorize’ the arrays of pixels,
i.e., to stack its columns (column-major order) or its rows (row-major order) into a long vector. In this case
for each image we lexicographically list the gray level data for each pixel, say row-major, so we end up with
a vector of length m = 20 · 16 = 320 for each image. Therefore we are in a situation where n = 390 and
m = 320.

A class of the dimension reduction methods in data mining consists of simply mapping directly the samples
into a space of small dimension d. The smallest dimension is one, which is of limited interest. The case d = 2
is common for visualizing, for example, how the data samples are separated by the method under study. For
instance, Figure 2 shows the results of two such methods, namely the classical Linear Discriminant Analysis
method of Fisher, see, e.g., [8, p. 184], and the Locally Linear Embedding (LLE) of Roweis and Saul[34].
Details on these methods will be given later in the paper. Each different symbol (and color) corresponds to
one of the digits from 0 to 9. There appears to be distinct blocks of data that form ‘clusters’ and there are
10 of them, clearly separated for LDA. Each of these clusters corresponds to one of the 10 digits.

∗Actually for this particular data set, the gray level is either zero or one. In other situations it can take a larger number of
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(a) LDA (b) LLE

Figure 2. Two mappings of handwritten digits into 2-dimensional space.
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Figure 3. k-nearest neighbor classification.

This illustration will give us the opportunity to distinguish between two subclasses of methods used in
data mining. There is a good reason why the projected data of the 390 digits onto 2D space appears to be
better clustered on the left side of Figure 2 while those on the right side do not look as well separated. The
reason is that the mapping Ψ, which projects an item from R390 to R2, exploits known information about
the data. Specifically, we know to which digit each of the 390 images corresponds. We can label these with
their digits and when we seek the mapping Ψ this information is utilized. This is referred to as supervised
learning. One question that may arise is: why do this since we already have the information regarding the
digits? In other words, there appears to be no reason to find a mapping to a lower dimension space if we
have all the label information about these handwritten digits. One of the major goals of supervised learning
is to use this information to derive a good mapping Ψ, which will then be applied not to the data X itself,
but to new data samples which are not part of X, in an effort to find information about them. Suppose we
are presented with a handwritten digit t that is not among the 390 samples. How can a machine recognize
it? For human brains the task is fairly easy. In order to recognize the digit by computers, i.e., to find its
label (a number from 0 to 9), we can use the data set X along with the label information available for it.
For example we can project everything, i.e., the 390 digits and the test digit t, onto a 2-D plane as was done
above and then find the closest, say, 8 items, among the 390 projected digits to the projection of t, using
the Euclidean distance. We will then assign to t the most frequently occurring label among those of the 8
projected digits. This process is called k-nearest neighbor (k-NN) classification, as the labels of the k closest
neighbors are used for determining the unknown class label of the test data sample t. See Figure 3 for an

values say from 0 to 255.
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Figure 4. Illustration of the problem of classification (e.g. spam vs. non-spam).

illustration for the case where k = 8. The data set X along with the labels is typically called training set.
The digits are grouped into 10 groups (one for each digit) called classes, and there is a label associated with
each class.

In contrast, unsupervised clustering is the task of finding subsets of the data such that items from the same
subset are most similar and items from distinct subsets are most dissimilar. Here the degree of similarity
can be measured by a simple distance (e.g. Euclidean) or via a kernel. Roughly speaking, the main idea of
using kernels is to perform implicitly the learning task in a feature space of much higher dimension than
the original space, with the hope that learning will be easier and more effective in such a feature space. The
latter is obtained by applying a nonlinear mapping Φ † to the original space to which columns of X belong.
Then kernels enable the fast computation of inner products 〈Φ(xi),Φ(xj)〉, giving rise to a generalized notion
of ‘similarity’ between any pair of items from X. In unsupervised learning no label information is available
and no information is used other than the data itself. The LLE method mentioned earlier is in this category
and its result on the handwritten digits, shown on the right of Figure 2, is rather impressive considering that
only the pixels are used and that the mapping is from dimension 390 to dimension 2.

In classification (supervised learning), we are given a set of distinct data sets that are labeled (e.g. samples
of handwritten digits labeled from 0 to 9), and when a new sample is presented to us we must determine to
which of the sets it is most likely to belong. We have already seen the example of handwritten digits, where
the problem is to recognize a digit given many labeled samples of already-deciphered digits available in a
given training data set. Another example is that of classifying e-mail messages into ‘spam’ and ‘non-spam’
(two classes). An illustration is shown on the left side of Figure 4.

In many data mining applications it is often the case that labeled data are hard or expensive to obtain,
while at the same time there exists an abundance of unlabeled data. For example, image annotation is a time-
consuming and laborious task that must be performed by human experts, whereas unlabeled/un-annotated
images are very easy to collect. This scenario of limited supervision information is termed semi-supervised
and it presents a challenge to dimension reduction methods that must exploit both labeled and unlabeled
data effectively.

In order to perform these tasks, whether in a (semi-)supervised or unsupervised setting, it is common to
first process the given data sets (e.g. the set of handwritten digits) in order to reduce its dimension, i.e., to
find a data set of much lower dimension than the original one, but which preserves its main features. What
is often misunderstood is that this dimension reduction is not done for the sole purpose of reducing cost, but
mainly for reducing the effect of noise and extracting the main features of the data. For this reason, the low
dimensional vectors yi are also known as features and the dimension reduction process is sometimes referred
to as feature extraction.

There have been two classes of methods proposed for dimension reduction. The first class of methods can

†This mapping is not to be confused with Ψ.
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Figure 5. Linear projection

be termed linear or projective. This includes all methods whereby the data matrix X is explicitly transformed
into a low-dimensional version Y by a linear transformation; that is, the mapping Ψ corresponds to a linear
transformation in this case. Then these projective methods find an m×d (m� d) matrix V and express the
reduced dimension data as Y = V TX. Figure 5 summarizes the notation and illustrates the linear projection
process. The methods in the second class, called nonlinear methods, do not rely on explicit projections and
find directly the low dimensional data matrix Y . In this case, the mapping Ψ is implicit and inherently
nonlinear [27]. Both types of dimension reduction methods can be extended to supervised versions, where
the class labels are taken into account when performing the reduction step.

We have already mentioned that Y is sought such that it is a faithful representation of X, i.e., certain
properties of X are preserved in the reduced space. Examples of properties to be preserved may include the
global geometry, neighborhood information such as local neighborhoods [5, 34] and local tangent space [60],
distances between data samples [46, 54], or angles formed by adjacent line segments [43].

The goal of this paper is (i) to highlight the use of eigenproblems in dimension reduction as well as
provide an exposition of a few relevant techniques and (ii) to unravel some of the relationships between these
dimension reduction methods, their supervised counterparts and the optimization problems they rely upon.
Although the paper includes an overview of some relevant techniques, it is not meant to be exhaustive, as the
main goal is to provide a unified view of such methods and reveal the connections between them. Also, the
paper will not describe the details of the various applications. Instead these applications will be summarized
and expressed in simple mathematical terms with the goal of showing the objective function that is optimized
in each case. In addition, two main observations will be made in this paper. The first is about a distinction
between the projective methods and the nonlinear ones. Specifically, the eigenvalue problem solved in the
linear case consists of applying a projection technique, i.e., a Rayleigh-Ritz projection method, as it leads
to the solution of an eigenvalue problem in the space spanned by the columns of the data matrix XT . The
second is that these two families of methods can be brought together thanks to the use of kernels. These
observations will strengthen a few similar observations made in a few earlier papers, e.g., [24, 21, 55].

The rest of this paper is organized as follows. Section 2 summarizes a few well-known results of linear
algebra that will be exploited repeatedly in the paper. Then, Sections 3 and 4 provide a brief overview of
nonlinear and linear methods respectively for dimension reduction. Section 5 discusses dimension reduction
in supervised settings, where the class labels of the data are taken into account, and Section 6 deals with
the semi-supervised scenario, where not all of the training samples are associated with a class label. Section
7 provides an analysis of relations between the different methods as well as connections to methods from
different areas, such as spectral clustering and projection techniques for eigenvalue problems. Kernelized
versions of different linear dimension reduction methods are discussed in Section 8, along with various
relationships with their nonlinear counterparts. Section 9 provides illustrative examples for data visualization
and classification of handwritten digits and faces. Finally, Section 10 briefly mentions some numerical
techniques beyond trace optimizations for dimension reduction, and the paper ends with a conclusion in
Section 11.

Copyright c© 200 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 200; 0:0–0
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2. Preliminaries

First, given a symmetric matrix A of dimension n × n and an arbitrary orthogonal matrix V of dimension
n×d then the trace of V TAV is maximized when V is an orthogonal basis of the eigenspace associated with
the (algebraically) largest eigenvalues. In particular, it is achieved for the eigenbasis itself: if eigenvalues are
labeled in decreasing order and u1, · · · , ud are eigenvectors associated with the first d eigenvalues λ1, · · · , λd,
and U = [u1, · · · , ud], with UTU = I, then,

max8<: V ∈ Rn×d
V TV = I

Tr
[
V TAV

]
= Tr

[
UTAU

]
= λ1 + · · ·+ λd. (3)

While this result is seldom explicitly stated on its own in standard textbooks, it is an immediate consequence
of the Courant-Fisher characterization, see, e.g., [33, 35]. It is important to note that the optimal V is far
from being unique. In fact, any V which is an orthonormal basis of the eigenspace associated with the
first d eigenvalues will be optimal. In other words, what matters is the subspace rather than a particular
orthonormal basis for it.

The main point is that to maximize the trace in (3), one needs to solve a standard eigenvalue problem. In
many instances, we need to maximize Tr [V TAV ] subject to a new normalization constraint for V , one that
requires that V be B-orthogonal, i.e., V TBV = I. Assuming that A is symmetric and B positive definite,
we know that there are n real eigenvalues for the generalized problem Au = λBu, with B-orthogonal
eigenvectors. If these eigenvalues are labeled in decreasing order, and if U = [u1, · · · , ud] is the set of
eigenvectors associated with the first d eigenvalues, with UTBU = I, then we have

max8<: V ∈ Rn×d
V TBV = I

Tr
[
V TAV

]
= Tr

[
UTAU

]
= λ1 + · · ·+ λd. (4)

In reality, Problem (4) often arises as a simplification of an objective function that is more difficult to
maximize, namely:

max8<: V ∈ Rn×d
V TCV = I

Tr
[
V TAV

]
Tr [V TBV ]

. (5)

Here B and C are assumed to be symmetric and positive definite for simplicity. The matrix C defines the
desired orthogonality and in the simplest case it is just the identity matrix. The original version shown above
has resurfaced in recent years, see, e.g., [19, 49, 56, 59, 62] among others. Though we will not give the above
problem as much attention as the more standard problem (4), it is important to give an idea of the way it
is commonly solved. There is no loss of generality in assuming that C is the identity. Since B is assumed
to be positive definite‡, it is not difficult to see that there is a maximum µ that is reached for a certain
(non-unique) orthogonal matrix, which we will denote by U . Then, Tr [V TAV ] − µ Tr [V TBV ] ≤ 0 for any
orthogonal V . This means that for this µ we have Tr [V T (A − µB)V ] ≤ 0 for any orthogonal V , and also
Tr [UT (A−µB)U ] = 0. Therefore, we have the following necessary condition for the pair µ,U to be optimal:

max
V TV=I

Tr [V T (A− µB)V ] = Tr [UT (A− µB)U ] = 0. (6)

According to (3), the maximum trace of V T (A − µB)V is simply the sum of the largest d eigenvalues of
A−µB and U is the set of corresponding eigenvectors. If µ maximizes the trace ratio (5) (with C = I), then
the sum of the largest d eigenvalues of the pencil A − µB equals zero, and the corresponding eigenvectors
form the desired optimal solution of (5).

‡We can relax the assumptions: B can be positive semi-definite, but for the problem to be well-posed its null space must be of
dimension less than d. Also if A is positive semi-definite, we must assume that Null(A) ∩Null(B) = ∅.

Copyright c© 200 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 200; 0:0–0
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When B is positive definite, it can be seen that the function

f(θ) = max
V TV=I

Tr [V T (A− θB)V ]

is a decreasing function of θ. For θ = 0 we have f(θ) > 0. For θ > λmax(A,B) we have f(θ) < 0, where
λmax(A,B) is the largest generalized eigenvalue of the pencil (A,B). Finding the optimal solution will involve
a search for the (unique) root of f(θ). In [49, 19, 62] algorithms were proposed to solve (5) by computing this
root and by exploiting the above relations. It appears clear that it will be more expensive to solve (5) than
(4), because the search for the root µ will typically involve solving several eigenvalue problems instead of just
one. However, this difference can be mitigated when these eigenvalue problems are solved only approximately.

3. Nonlinear dimension reduction

We start with an overview of nonlinear methods. In what follows, we discuss LLE and Laplacean Eigenmaps,
which are the most representative nonlinear methods for dimension reduction. These methods begin with
the construction of a weighted graph which captures some information on the local neighborhood structure
of the data. In the sequel, we refer to this graph as the affinity graph. Specifically, the affinity (or adjacency)
graph is a graph G = (V, E) whose nodes, which belong to the set V, represent the data samples. The edges
of this graph can be defined for example by taking a certain nearness measure and including all samples
within a radius ε of a given node, to its adjacency list. Alternatively, one can include those k nodes that are
the nearest neighbors to xi. In the latter case it is called the k-NN graph. It is typical to assign weights wij
on the edges eij ∈ E of the affinity graph. Note that the weights can either be symmetric or asymmetric, and
different assignments will be clear in the exposition of specific dimension reduction methods. The affinity
graph along with these weights then defines a matrix W whose entries are the weights wij that are nonzero
only for adjacent nodes in the graph.

3.1. LLE

In Locally Linear Embedding (LLE), the construction of the affinity graph is based on the assumption that
the samples lie on some high-dimensional manifold, so each sample is approximately expressed as a linear
combination of a few neighbors, see [34, 37]. Thus, the affinity matrix is built by computing optimal weights
which will relate a given sample to its neighbors in some locally optimal way. The reconstruction error for
sample i can be measured by ∥∥∥∥∥∥xi −

∑
j

wijxj

∥∥∥∥∥∥
2

2

. (7)

The weights wij represent the linear coefficients for (approximately) reconstructing the sample xi from its
neighbors {xj}, with wij = 0 if xj is not one of the k nearest neighbors of xi. We can set wii ≡ 0, for all i.
The coefficients are scaled so that their sum is unity, i.e.,∑

j

wij = 1. (8)

Determining the wij ’s for a given sample xi is a local calculation, in the sense that it only involves xi and its
nearest neighbors. As a result, computing the weights will be fairly inexpensive; an explicit solution can be
extracted by solving a small linear system which involves a ‘local’ Grammian matrix; for details see [34, 37].
After this phase is completed we have available a matrix W such that each column xi of the data set is well
represented by the linear combination

∑
j wijxj . In other words, X ≈ XWT , i.e., XT is a set of approximate

left null vectors of I −W .
The procedure then seeks d-dimensional vectors yi, i = 1, . . . , n so that the same relation is satisfied

between the matrix W and the yi’s. An illustration is shown on Figure 6. This is achieved by minimizing
the objective function

FLLE(Y ) =
∑
i

‖yi −
∑
j

wijyj‖22. (9)

Copyright c© 200 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 200; 0:0–0
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Figure 6. Left: Local neighborhood and construction of the weight matrix in LLE. Right: LLE finds a
low-dimensional space (Y ) that best reproduces the local neighborhoods of the original space.

LLE imposes two constraints to this optimization problem: i) the mapped coordinates must be centered at
the origin and ii) the embedded vectors must have unit covariance:∑

i

yi = 0; and
1
n

∑
i

yiy
T
i = I . (10)

The objective function (9) is minimized with these constraints on Y .
We can rewrite (9) as a trace by noting that FLLE(Y ) = ‖Y − YWT ‖2F , and this leads to:

FLLE(Y ) = Tr
[
Y (I −WT )(I −W )Y T

]
. (11)

Therefore the new optimization problem to solve is§

min8<: Y ∈ Rd×n
Y Y T = I

Tr
[
Y (I −WT )(I −W )Y T

]
. (12)

The solution of the problem is obtained from the set of eigenvectors associated with the d smallest eigenvalues
of M ≡ (I −WT )(I −W ):

(I −WT )(I −W )ui = λiui; Y = [u2, · · · , ud+1]T . (13)

Note that the eigenvector associated with the eigenvalue zero is discarded and that the matrix Y is simply
the set of bottom eigenvectors of (I −WT )(I −W ) associated with the 2nd to (d + 1)-th eigenvalues. We
will often refer to the matrix M = (I −WT )(I −W ) as the LLE matrix.

3.2. Laplacean Eigenmaps

The Laplacean Eigenmaps technique [5, 4] is rather similar to LLE. It uses different weights to represent
locality and a slightly different objective function. Two common choices are weights of the heat (or Gaussian)
kernel wij = exp(−‖xi − xj‖22/σ2) or constant weights (wij = 1 if i and j are adjacent, wij = 0 otherwise).
The first choice of weights is very popular and it differs from the second choice mainly in that the neighbors
of a data sample are treated in a non-uniform way. In particular, the role of the parameter σ is to assign a
relatively large (resp. small) weight to the closest (resp. farthest) neighbors. In this way the closest neighbors

§The final yi’s are obtained by translating and scaling each column of Y .
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are given more importance. The choice of the parameter σ is crucial for the performance of methods that
use the Gaussian kernel.

Once this graph is available, a Laplacean matrix of the graph is constructed by setting a diagonal matrix
D with diagonal entries dii =

∑
j wij . The matrix

L ≡ D −W
is the Laplacean of the weighted graph defined above. Note that the row-sums of the matrix L are zero by
the definition of D, so L1 = 0, and therefore L is singular. The problem in Laplacean Eigenmaps is then to
minimize

FEM (Y ) =
n∑

i,j=1

wij‖yi − yj‖22 (14)

subject to an orthogonality constraint that uses the matrix D for scaling:

Y DY T = I .

The rationale for this approach is to put a penalty for mapping nearest neighbor nodes in the original graph
to distant samples in the low-dimensional data.

Compare (14) and (9). The difference between the two is subtle and one might ask if (14) can also be
converted into a trace optimization problem similar to (12). As it turns out FEM can be written as a trace
and this bring the method quite close to LLE in spirit. This is because it can be easily shown that [22, 25]:

FEM (Y ) = 2Tr [Y (D −W )Y T ]. (15)

Therefore the new optimization problem to solve is

min8<: Y ∈ Rd×n
Y D Y T = I

Tr
[
Y (D −W )Y T

]
. (16)

The solution Y to this optimization problem can be obtained from the eigenvectors associated with the d
smallest eigenvalues of the generalized eigenvalue problem

(D −W )ui = λiDui ; Y = [u2, · · · , ud+1]T . (17)

One can also solve a standard eigenvalue problem by making a small change of variables, and this is useful
to better see links with other methods. Indeed, it would be useful to standardize the constraint Y DY T so
that the diagonal scaling does not appear. For this we set Ŷ = Y D1/2 and Ŵ = D−1/2WD−1/2, and this
simplifies (16) into:

min8<: Ŷ ∈ Rd×n
Ŷ Ŷ T = I

Tr
[
Ŷ (I − Ŵ )Ŷ T

]
. (18)

In this case, (17) yields:
(I − Ŵ )ûi = λiûi ; Y = [û2, · · · , ûd+1]TD1/2 . (19)

The matrix L̂ = I − Ŵ = D−1/2LD−1/2 is called the normalized Laplacean.

4. Linear dimension reduction

The methods in the previous section do not provide an explicit function that maps a vector x into its low-
dimensional representation y in d-dimensional space. This mapping is only known for each of the vectors
xi of the data set X, i.e., we know how to associate a low-dimensional item yi to each sample xi. In some
applications it is important to be able to find the mapping y for an arbitrary, ‘out-of-sample’ vector x. The
methods discussed in this section have been developed in part to address this issue. They are based on an

Copyright c© 200 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 200; 0:0–0
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explicit (linear) mapping defined by a matrix V ∈ Rm×d. These projective techniques replace the original
data X by a matrix of the form

Y = V TX, where V ∈ Rm×d. (20)

Once the matrix V has been ’learned’, i.e., extracted, each vector xi can be projected to the reduced space
by simply computing yi = V Txi. If V is an orthogonal matrix, then Y represents the orthogonal projection
of X into the V -space.

4.1. PCA

The best known technique in this category is Principal Component Analysis (PCA) [72]. PCA computes an
orthonormal matrix V so that the variance of the projected vectors is maximized, i.e, V is the maximizer of

max
V ∈ Rm×d
V TV = I

n∑
i=1

∥∥∥∥∥∥yi − 1
n

n∑
j=1

yj

∥∥∥∥∥∥
2

2

, yi = V Txi. (21)

Recalling that 1 denotes the vector of all ones, the objective function in (21) becomes

FPCA(Y ) =
n∑
i=1

∥∥∥∥∥∥yi − 1
n

n∑
j=1

yj

∥∥∥∥∥∥
2

2

= Tr
[
V TX(I − 1

n
11T )XTV

]
.

In the end, the above optimization can be restated as

max8<: V ∈ Rm×d
V TV = I

Tr
[
V TX(I − 1

n
11T )XTV

]
. (22)

In the sequel we will denote by X̄ the matrix X(I − 1
n11T ), which is simply the matrix with centered data,

i.e., each column is x̄i = xi − µ where µ is the mean of X, µ =
∑
xi/n. Since the matrix in (22) can be

written V T X̄X̄TV , (22) becomes

max8<: V ∈ Rm×d
V TV = I

Tr
[
V T X̄X̄TV

]
. (23)

The orthogonal matrix V which maximizes the trace in (23) is simply the set of left singular vectors of X̄
associated with the largest d singular values,

[X̄X̄T ]vi = λivi. (24)

The matrix V = [v1, · · · , vd] is used for projecting the data, so Y = V T X̄. If X̄ = UΣZT is the SVD of X̄,
the solution to the above optimization problem is V = Ud, the matrix of the first d left singular vectors of
X, so, denoting by Σd the top left d× d block of Σ, and Zd the matrix of the first d columns of Z, we obtain

Y = UTd X̄ = ΣdZTd . (25)

As it turns out, maximizing the variance on the projected space is equivalent to minimizing the projection
error

‖X̄ − V V T X̄‖2F = ‖X̄ − V Y ‖2F .
This is because a little calculation will show that

‖X̄ − V Y ‖2F = Tr [(X̄ − V Y )T (X̄ − V Y )] = Tr [X̄T X̄]− Tr [V T X̄X̄TV ].

The matrix V V T is an orthogonal projector onto the span of V . The samples V yi ∈ Rm are sometimes
referred to as reconstructed points. PCA minimizes the sum of the squares of the distance between any sample
in the data set and its reconstruction, i.e., its projection.
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4.2. MDS and ISOMAP ¶

In metric Multi-Dimensional Scaling (metric MDS) the problem posed is to project data in such a way that
distances ‖yi − yj‖2 between projected samples are closest to the original distances ‖xi − xj‖2. Instead of
solving the problem in this form, MDS uses a criterion based on inner products.

It is now assumed that the data is centered at zero so we replace X by X̄. An important result used is
that one can recover distances from inner products and vice-versa. The matrix of inner products, i.e., the
Grammian of X̄, defined by

G = [〈x̄i, x̄j〉]i,j=1,··· ,n (26)

determines completely the distances, since ‖x̄i − x̄j‖2 = gii + gjj − 2gij . The reverse can also be done, i.e.,
one can determine the inner products from distances by ‘inverting’ the above relations. Indeed, under the
assumption that the data is centered at zero, it can be shown that [47]

gij =
1
2

 1
n

∑
k

(sik + sjk)− sij − 1
n2

∑
k,l

skl

 ,

where sij = ‖x̄i − x̄j‖2. In matrix form, the relation is:

G = −1
2

[I − 1
n
11T ]S[I − 1

n
11T ] ; S = [sij ]i,j=1,...,n.

As a result of the above equality, in order to find a d-dimensional projection which preserves pairwise
distances as possible, we need to find a d× n matrix Y whose Grammian Y TY is close to G, the Grammian
of X, i.e., we need to find the solution of

min
Y ∈ Rd×n

‖G− Y TY ‖2F . (27)

Let G = ZΛZT be the eigenvalue decomposition of G, where it is assumed that the eigenvalues are labeled
from largest to smallest. Then the solution to (27) is Y = Λ1/2

d ZTd where Zd consists of the first d columns
of Z, Λd is the d× d upper left block of Λ. Note that with respect to the SVD of X̄ this is equal to ΣdZTd ,
which is identical with the result obtained with PCA; see equation (25). So metric MDS gives the same
exact result as PCA. However it arrives at this result using a different path. PCA uses the covariance matrix,
while MDS uses the Gram matrix. From a computational cost point of view, there is no real difference if
the calculation is based on the SVD of X̄. We should note that the solution to (27) is unique only up to
orthogonal transformations. This is because a transformation such as Ŷ = QY of Y , where Q is orthogonal,
will not change distances between y-samples.

Finally, we mention in passing that the technique of ISOMAP [46] essentially performs the same steps as
MDS, except that the Grammian G = X̄T X̄ is replaced by a pseudo-Grammian Ĝ obtained from geodesic
distances between the samples xi:

Ĝ = −1
2

[I − 1
n
11T ]Ŝ[I − 1

n
11T ] ; Ŝ = [ŝij ]i,j=1,...,n,

where ŝij is the squared shortest graph distance between xi and xj .

4.3. LPP

The Locality Preserving Projections (LPP) [22] is a graph-based projective technique. It projects the data
so as to preserve a certain affinity graph constructed from the data. LPP defines the projected samples in
the form yi = V Txi by putting a penalty for mapping nearest neighbor nodes in the original graph to distant
samples in the projected data. Therefore, the objective function to be minimized is identical with that of
Laplacean Eigenmaps,

FLPP (Y ) =
n∑

i,j=1

wij‖yi − yj‖22 .

¶ISOMAP is essentially a nonlinear method which is presented here only because it is closely related to PCA.
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The matrix V , which is the actual unknown, is implicitly represented in the above function through the
dependence of the yi’s on V . Writing Y = V TX, we reach the optimization problem,

min8<: V ∈ Rm×d
V T (XDXT ) V = I

Tr
[
V TX(D −W )XTV

]
(28)

whose solution can be computed from the generalized eigenvalue problem

X(D −W )XT vi = λiXDX
T vi. (29)

Similarly to Eigenmaps, the smallest d eigenvalues and eigenvectors must be computed.
It is simpler to deal with the ‘normalized’ case of LPP, by scaling the set Y as before in the case of

Laplacean Eigenmaps (see eq. (18)). We define Ŷ = Y D1/2 = V TXD1/2. So, if X̂ = XD1/2, we have
Ŷ = V T X̂, and the above problem then becomes

min8<: V ∈ Rm×d
V T (X̂X̂T ) V = I

Tr
[
V T X̂(I − Ŵ )X̂TV

]
(30)

where Ŵ is the same matrix as in (18). The eigenvalue problem to solve is now

X̂(I − Ŵ )X̂T vi = λiX̂X̂
T vi. (31)

The projected data yi is defined by yi = V Txi for each i, where V = [v1, · · · , vd].

4.4. ONPP

Orthogonal Neighborhood Preserving Projection (ONPP) [24, 25] seeks an orthogonal mapping of a given data
set so as to best preserve the same affinity graph as LLE. In other words, ONPP is an orthogonal projection
version of LLE. The projection matrix V in ONPP is determined by minimizing the same objective function as
in (11), with the additional constraint that Y is of the form Y = V TX and the columns of V be orthonormal,
i.e. V TV = I. The optimization problem becomes

min8<: V ∈ Rm×d
V TV = I

Tr
[
V TX(I −WT )(I −W )XTV

]
. (32)

Its solution is the basis of the eigenvectors associated with the d smallest eigenvalues of the matrix
M̃ ≡ X(I −WT )(I −W )XT = XMXT .

X(I −WT )(I −W )XTui = λui. (33)

Then the projector V is [u1, u2, · · · , ud] and results in the projected data Y = V TX.
The assumptions that were made when defining the weights wij in Section 3.1 imply that the n×n matrix

I −W is singular due to eq. (8). In the case when m > n the matrix M̃ , which is of size m×m, is at most of
rank n and it is therefore singular. In the case when m ≤ n, M̃ is not necessarily singular but it is observed
in practice that ignoring the smallest eigenvalue is helpful [25].

4.5. Other variations on the locality preserving theme

A few possible variations of the methods discussed above can be developed. As was seen, ONPP is one such
variation which adapts the LLE affinity graph and seeks a projected data which preserves this graph just as
in LLE. Another very simple option is to solve the same optimization problem as ONPP but require the same
orthogonality of the projected data as LLE, namely: Y Y T = I. This yields the constraint V TXXTV = I
instead of the V TV = I required in ONPP. In [24] we called this Neighborhood Preserving Projections (NPP).
The resulting new optimization problem is the following modification of (32)

min8<: V ∈ Rm×d
V TXXTV = I

Tr
[
V TX(I −WT )(I −W )XTV

]
. (34)
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and the new solution is
X(I −WT )(I −W )XTui = λ(XXT )ui. (35)

As before, V = [u1, · · · , ud] and yi = V Txi, i = 1, · · · , n.
Another variation goes in the other direction by using the objective function of LPP (using graph

Laplaceans) and requiring the data to be orthogonally projected:

min8<: V ∈ Rm×d
V T V = I

Tr
[
V TX(D −W )XTV

]
. (36)

This was referred to as Orthogonal Locality Preserving Projections (OLPP) in [24]. Note in passing that a
different technique was developed in [10] and named Orthogonal Laplacean faces, which is also sometimes
referred to as OLPP. We will not refer to this method in this paper and there is therefore no confusion.

5. Supervised dimension reduction

We have already mentioned that supervised methods, unlike unsupervised methods, take into account class
labels during dimension reduction. It has been observed in general that supervised methods for dimension
reduction perform better than unsupervised methods in many classification tasks. In what follows, we first
describe supervised versions of the above graph-based methods and then we discuss Linear Discriminant
Analysis (LDA), which is one of the most popular supervised techniques for linear dimension reduction.

5.1. Supervised graph-based methods

As discussed so far, the methods in Sec. 4 do not make use of class labels. It is possible to develop supervised
versions of those methods by taking the class labels into account. Assume that we have c classes and that
the data are organized, without loss of generality, as X1, · · · , Xc with Xi ∈ Rm×ni , where ni denotes the
number of samples that belong to the ith class. In other words, assume that the data samples are ordered
according to their class membership.

In supervised methods the class labels are used to build the graph. The main idea is to build the graph
in a discriminant way in order to reflect the categorization of the data into different classes. One simple
approach is to impose that an edge eij = (xi, xj) exists if and only if xi and xj belong to the same class. In
other words, we make adjacent those nodes that belong to the same class. For instance, preserving localities
in such a supervised graph, will result in samples from the same class being projected close-by in the reduced
space.

Consider now the structure of the induced adjacency matrix H. Observe that the data graph G consists of
c cliques, since the adjacency relationship between two nodes reflects their class membership. Let 1nj

denote
the vector of all ones, with length nj , and Hj = 1

nj
1nj

1Tnj
∈ Rnj×nj be the block corresponding to the jth

class. The n× n adjacency matrix H will be of the following form

H = diag[H1, H2, · · · , Hc]. (37)

Thus, the (1,1) diagonal block is of size n1 × n1 and has the constant entries 1/n1, the (2,2) diagonal block
is of size n2 × n2 and has the constant entries 1/n2, and so on. Using the above supervised graph in the
graph-based dimension reduction methods yields their supervised versions.

5.2. LDA

The principle used in Linear Discriminant Analysis (LDA) is to project the original data linearly in such
a way that the low-dimensional data is best separated. Fisher’s Linear Discriminant Analysis, see, e.g.,
Webb [50], seeks to project the data in low-dimensional space so as to maximize the ratio of the “between
scatter” measure over “within scatter” measure of the classes, which are defined next. Let µ be the mean of
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Figure 7. Left: class centroids and global centroid. Right: illustration of LDA in the one-dimensional
case. Note that the main axis is shifted down for better clarity.

all the data set, and µ(k) be the mean of the k-th class, which is of size nk, and define the two matrices

SB =
c∑

k=1

nk(µ(k) − µ)(µ(k) − µ)T , (38)

SW =
c∑

k=1

∑
xi ∈Xk

(xi − µ(k))(xi − µ(k))T . (39)

If we project the set on a one-dimensional space spanned by a given vector a, then the quantity

aTSBa =
c∑

k=1

nk|aT (µ(k) − µ)|2

represents a weighted sum of (squared) distances of the projection of the centroids of each set from the mean
µ. At the same time, the quantity

aTSWa =
c∑

k=1

∑
xi ∈ Xk

|aT (xi − µ(k))|2

is the sum of the variances of each the projected sets. An illustration is shown in Figure 7.
LDA projects the data so as to maximize the ratio of these two numbers:

max
a

aTSBa

aTSWa
. (40)

This optimal a is known to be an eigenvector associated with the largest eigenvalue of the pair (SB , SW ). If
we call ST the total covariance matrix

ST =
∑

xi ∈ X

(xi − µ)(xi − µ)T , (41)

then,
ST = SW + SB . (42)

Therefore, (40) is equivalent to

max
a

aTSBa

aTSTa
, (43)

or

min
a

aTSWa

aTSTa
, (44)
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where the optimal a is known to be an eigenvector associated with the largest eigenvalue of the pair (SB , ST ),
or the smallest eigenvalue of the pair (SW , ST ).

The above one-dimensional projection generalizes to projections on d-dimensional spaces, i.e., we can
modify the objective function such that the vector a is replaced by a matrix V . A traditional way towards
such a generalization is to maximize the trace of V TSBV while requiring the columns of the solution matrix
V to be SW -orthogonal, i.e., imposing the condition V TSWV = I. The optimum is achieved for the set of
eigenvectors of the generalized eigenvalue problem

SBui = λiSWui ,

associated with the largest d eigenvalues. Incidentally, the above problem can also be formulated as a
generalized singular value problem (see e.g., [23]). Another approach [49] casts the problem as maximizing
the ratio of the two traces:

max8<: V ∈ Rn×d
V TV = I

Tr
[
V TSBV

]
Tr [V TSWV ]

.

Approaches for solving this problem were briefly discussed in Section 2.
Note that with simple algebraic manipulations, the matrices SB , SW and ST can be expressed in terms of

the data matrix X̄:

SB = X̄HX̄T ,

SW = X̄(I −H)X̄T ,

ST = X̄X̄T .

The matrix SB has rank at most c because each of the blocks in H has rank one and therefore the matrix
H itself has rank c. Because the matrix I − H is an orthogonal projector, its range is the null-space of H
which has dimension n− c. Thus, I −H, which plays the role of a Laplacean, has rank at most n− c. The
corresponding eigenvalue problem to solve for (44) is

X̄(I −H)X̄Tui = λi(X̄X̄T )ui. (45)

We note finally that LDA can provide at most c meaningful projection directions, due to the fact that SB
has rank at most c. This may be too restrictive when one is interested in reduced spaces of dimension larger
than c.

6. Semi-supervised dimension reduction

In many real-world applications of data mining, supervision information is hard to obtain. In other words,
labeled data are typically few and labeling a huge set of data samples is tedious and time consuming. At the
same time, there may be an abundance of unlabeled data which can be easily collected. In such a scenario,
which is called semi-supervised, one is confronted with the challenge of exploiting both labeled and unlabeled
data to solve the learning task.

Unsupervised methods may be insufficient for classification tasks, as shown on the left of Fig. 8, where PCA
provides misleading information about the best discriminant axis. On the other hand, supervised methods
may face serious problems with over-fitting when the labeled data are very few. This is shown on the right
of Fig. 8, where LDA is biased by the particular instantiation of the small labeled set. Using the distribution
of the unlabeled data, one could potentially remove the bias and ‘correct’ the LDA projection axis.

The main goal of semi-supervised methods is to use both labeled and unlabeled data in order to address
such problems and achieve effective performance on future (out-of-sample) data points. In the past few years,
semi-supervised methods for dimension reduction have attracted great interest. A short overview of recent
related research efforts is provided next.
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labeled data
unlabeled data

LDA

PCA labeled data

unlabeled data

PCA
LDA

Figure 8. Illustrative examples of PCA and LDA weaknesses in semi-supervised settings. The solid
line (resp. dashed line) denotes the LDA (resp. PCA) projection direction. The filled (resp. unfilled)

symbols denote labeled (resp. unlabeled) data examples.

6.1. Linear methods

A straightforward criterion for semi-supervised dimension reduction is the following

max
v

1
2n2

∑
i,j(v

>xi − v>xj)2 + α
2

∑
`(xi) 6=`(xj)(v

>xi − v>xj)2 − β
2

∑
`(xi)=`(xj)(v

>xi − v>xj)2,

where a one dimensional projection has been considered for simplicity. In the above, `(·) denotes the class
label of the data sample. The first summand expresses the variance of all (both labeled and unlabeled) data
samples in the reduced space, which is exactly the same as in the PCA criterion. The second and third
summands involve only the labeled data samples and represent the nearness of samples from different and
same classes, respectively. This criterion, which is closely related to that proposed in [68], makes use of both
labeled and unlabeled data. Using similar derivations as in Sec. 4, the above criterion reads in the general
d-dimensional case:

max8<: V ∈ Rm×d
V T V = I

Tr
[
V TX(D −W )XTV

]
, (46)

where

Wij =


1
n2 + α, `(xi) 6= `(xj)
1
n2 − β, `(xi) = `(xj)
1
n2 , otherwise,

and, as before, D is a diagonal matrix holding the row sums of W . Hence, the dimension reduction matrix V is
obtained from the eigenvectors associated with the largest eigenvalues of an appropriately defined Laplacean
matrix. Observe that in this case, the above semi-supervised criterion results in a modified weight matrix W
with different weighting schemes for labeled and unlabeled data.

Several approaches have attempted to extend LDA to semi-supervised settings. D. Cai et al. in [61]
proposed the so called Semi-supervised Discriminant Analysis (SDA), which is a regularized variant of LDA
that takes into account the unlabeled data. In particular, introducing a regularization term J(a) into (43)
results in

max
a

aTSBa

aTSTa+ µJ(a)
. (47)

The main idea in [61] is to include the manifold structure implied by all labeled and unlabeled data
samples as an unsupervised regularizer in the optimization problem above. Hence, they proposed to use
J(a) =

∑
ijWij(a>xi − a>xj)2, where W is the 0/1 weight matrix of the affinity graph formed from all

labeled and unlabeled data samples (i.e., wij = 1 if i and j are adjacent, wij = 0 otherwise). With this, (47)
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results in a generalized eigenvalue problem of the following form

SBa = λ(ST + µXLX>)a,

where L is the corresponding Laplacean matrix of the affinity graph. Similarly to LDA, this approach can
only provide at most c projection directions. A very similar idea has been independently proposed in [63].
Another form of regularization for LDA has been proposed in [69], where the regularizer is defined from
robust path-based similarities computed on the affinity graph. This approach also suffers from the limitation
that the number of projection directions is bounded by the number of classes c.

A different approach for semi-supervised extension of LDA has been proposed in [70]. The main idea is to
optimize the LDA criterion with respect to the labels of the unlabeled data. This is formulated as a concave
minimization problem and the constrained concave-convex procedure (CCCP) is employed to solve it. After
the solution of the optimization problem has been obtained, those unlabeled data samples whose class labels
are estimated with high confidence are introduced in the original labeled set, and LDA is performed again
in order to produce a more stable and more discriminant dimension reduction matrix.

Finally, the authors in [62] proposed a semi-supervised extension of orthogonal discriminant analysis using
label propagation. The latter is used as a tool to obtain a soft label for each unlabeled data sample. Then
the between-class and within-class scatter matrices are built according to those soft labels.

6.2. Nonlinear methods

The authors in [67] proposed the extension of the nonlinear dimension reduction methods LLE, ISOMAP
and LTSA [60] to the semi-supervised setting. Unlike the methods previously described, selected points in the
data set are assigned coordinates in the reduced dimension space (also known as ‘on-manifold’ coordinates)
prior to the dimension reduction procedure. The study in [67] shows that the low-dimensional coordinates
of the rest of the samples can be obtained by solving a linear system of equations. In a recent work [71], the
authors have revisited the same problem and they propose a spectral method to address it. They formulate
a trace constraint capturing the fact that the estimates of the unknown low-dimensional vectors yi should
be close to the provided on-manifold coordinates. This is combined with the trace optimization problem
of the LTSA method and the overall optimization results in a standard eigenvalue problem. However, it
should be noted that such supervision information in the form of on-manifold coordinates, as is used in both
approaches, is hard to obtain in practice.

7. Connections between dimension reduction methods

This section establishes connections between some of the methods discussed in previous sections.

7.1. Relation between the LLE matrix and the Laplacean matrix

A comparison between (12) and (18) shows that the two are quite similar. The only difference is in the matrix
inside the bracketed term. In one case it is of the form Y (I − Ŵ )Y T where I − Ŵ is the normalized graph
Laplacean, and in the other it is of the form Y (I −WT )(I −W )Y T where W is an affinity matrix. Can one
just interpret the LLE matrix (I −WT )(I −W ) as a Laplacean matrix? A Laplacean matrix L associated
with a graph is a a symmetric matrix whose off-diagonal entries are non-positive, and whose row-sums are
zero (or equivalently, the diagonal entries are the negative sums of the off-diagonal entries). In other words,
lij ≤ 0 for i 6= 0, lii = −∑j lij . The LLE matrix M = (I −W )T (I −W ) satisfies the second property (zero
row sum) but not the first (nonpositive off-diagonals) in general.

Proposition 7.1. The symmetric matrix M = (I − W )T (I − W ) has zero row (and column) sums. In
addition, denoting by w:j the j-th column of W ,

mjj = 1 + ‖w:j‖2 ; mij = −(wij + wji) + 〈w:j , w:i〉, i 6= j . (48)

Proof Since (I−W ) has row sums equal to zero, then (I−W )1 = 0 and thereforeM1 = (I−WT )(I−W )1 = 0,
which shows that the row sums of M are zero. Since M is symmetric, its column-sums are also zero. Since
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M = I −W −WT +WTW , a generic entry mij = eTi Mej of M is given by,

mij = eTi ej − eTi Wej − eTi WT ej + eTi W
TWej

= δij − (wij + wji) + 〈w:i, w:j〉
from which the relations (48) follow immediately after recalling that wii = 0. 2

Expression (48) shows that the off-diagonal entries of M can be positive, i.e., it is not true that mij ≤ 0
for all i 6= j. In the particular situation when wij = wji = 0 and i 6= j, then mij = 〈w:i, w:j〉 and (48)
implies that mij ≥ 0. When wij and wji are not both equal to zero but they are both small, then by the
same argument it is likely that mij will be non-negative. It can be observed with randomly generated sparse
matrices that in general there are few other instances of positive off-diagonal entries, i.e., in most cases, mij

is positive only when wij + wji is zero or small. For example, for the matrix

W =


0 0.4 0.6 0

0.1 0 0.3 0.6
0.2 0.4 0 0.4
0 0.5 0.5 0


one finds that all off-diagonal entries of (I − WT )(I − W ) are negative except the entries (1,4) and (by
symmetry) (4,1) whose value, the inner product of columns 1 and 4, equals 0.14.

Among other similarities between the LLE matrix and the graph Laplacean is the fact that both matrices
are symmetric positive semi-definite and that they are both related to the local structure of the data since
they relate nearby samples by a relation.

Since not every matrix M = (I −WT )(I −W ) can be a graph Laplacean matrix, one can ask the reverse
question: Given a normalized Laplacean matrix which we write as L̂ = I − Ŵ , is it possible to find a matrix
W such that the matrix M equals L̂? One easy answer is obtained by restricting W to being symmetric. In
this case, W = I −

√
I − Ŵ , which is dense and not necessarily positive. There is one important situation

where the Graph Laplacean is easily written as an LLE matrix and that is when I −W is a projector. One
specific situation of interest is when L = I − 1

n11T , which is the projector used by PCA, see (22). In this
case (I −WT )(I −W ) = I − Ŵ which means that the two methods will yield the same result. Yet another
situation of the same type in which L is a projector, arises in supervised learning, which brings us to the
next connection.

7.2. Connection between LDA, supervised NPP, and supervised LPP

Notice that in the supervised setting discussed in Section 5.1, the block diagonal adjacency matrix H (see
eq. (37)) is a projector. To see why this is true, define the characteristic vector gk for class k as the vector of
Rn whose ith entry is one if xi belongs to class k and zero otherwise. Then H can be alternatively written
as

H =
c∑

k=1

gkg
T
k

nk
,

which shows that H is a projector. Now take W = Ŵ = H and observe that (I −WT )(I −W ) = I −W =
I − Ŵ = I −H in this case. Next, compare (45), (31) and (35) and note that they are identical.

Proposition 7.2. LDA, supervised LPP and supervised NPP are mathematically equivalent when W =
Ŵ = H.

7.3. Connection between PCA and LPP

Next we will make other important connections between PCA and LPP. One of these connections was
observed in [22], see also [24]. Essentially, by defining the Laplacean graph to be a dense graph, specifically
by defining L = I − 1

n11T , one can easily see that the matrix XLXT is a scaled covariance matrix and thus
ignoring the constraint in LPP, one would get the projection on the lowest modes instead of the highest ones
as in PCA.
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Another connection is now considered. Compare the two eigenproblems (24) and (31) and notice that for
PCA we seek the largest eigenvalues whereas for LPP we seek the smallest ones. If we are able to select Ŵ
in (31) so that X̂(I − Ŵ )X̂T = I then we would recover the result of PCA (apart from the diagonal scaling
with D). We can restrict the choice by assuming D = I and assume that the data is centered, so X1 = 0.
Then it is easy to select such a matrix Ŵ in the common situation where m < n and X is of full rank. It is
the matrix Ŵ = I −XT (XXT )−2X. With this, the LPP problem (31) becomes vi = λi(XXT )vi and we are
computing the smallest λi and associated vi’s, which correspond to the largest eigenpairs of the covariance
matrix. Note also that I−Ŵ = SST where S = X† is the pseudo-inverse of X. We will revisit this viewpoint
when we discuss kernels in Section 8.

Proposition 7.3. When X is m × n with m < n and full rank, LPP with the graph Laplacean replaced by
the matrix I − Ŵ = XT (XXT )−2X is mathematically equivalent to PCA.

7.4. Connection to projection methods for eigenvalue problems

Comparing the eigenvalue problems (31) and (35) will reveal an interesting connection with projection
methods for eigenvalue problems. Readers familiar with projection methods will recognize in these problems,
a projection-type technique for eigenvalue problems, using the space spanned by XT . Recall that a projection
method for computing approximate eigenpairs of a matrix eigenvalue problem of the form

Au = λu

utilizes a certain subspace K from which the eigenvectors are extracted. Specifically, the conditions are as
follows, where the tildes denote the approximation: Find ũ ∈ K and λ̃ ∈ C such that

Aũ− λ̃ũ ⊥ K . (49)

This is referred to as an orthogonal projection method. Stating that ũ ∈ K gives k degrees of freedom if
dim(K) = k, and condition (49) imposes k independent constraints. If V is a basis of the subspace K, then
the above conditions become ũ = V y, for a certain y ∈ Rk, and (49) leads to

V T (A− λ̃I)V y = 0 or V TAV y = λ̃V TV y.

LLE is mathematically equivalent to computing the lowest eigenspace of the LLE matrix M = (I−WT )(I−
W ). Eigenmaps seeks the lowest eigenspace of the matrix I − Ŵ .

Proposition 7.4. LPP is mathematically equivalent to a projection method on Span {XT } applied to the
normalized Laplacean matrix L̂ = I − Ŵ , i.e., it is a projected version of eigenmaps. It will yield the exact
same result as eigenmaps when Span {XT } is invariant under L̂. NPP is mathematically equivalent to a
projection method on Span {XT } applied to the matrix (I −WT )(I −W ), i.e., it is a projected version of
LLE. It will yield the exact same results as LLE when Span {XT } is invariant under (I −WT )(I −W ).

One particular case when the two methods will be mathematically equivalent is in the special situation of
undersampling, i.e., when m ≥ n and the rank of X is equal to n. In this case XT is of rank n and therefore
the subspace Span {XT } is trivially invariant under L̂.

Corollary 7.5. When the column rank of X is equal to n (undersampled case) LPP is mathematically
equivalent to Eigenmaps and NPP is mathematically equivalent to LLE.

7.5. Connection to spectral clustering/partitioning

It is important to comment on a few relationships with the methods used for spectral clustering (graph
partitioning) [45, 31, 14, 28]. Given a weighted undirected graph G = (V, E), a k-way partitioning amounts
to finding k disjoint subsets V1, V2, . . . , Vk of the vertex set V so that the total weights of the edges that
cross different partitions are minimized while the sizes of the subsets are roughly balanced. Formally, a k-way
clustering minimizes the cost function:

F(V1, . . . ,Vk) =
k∑
`=1

∑
i∈V`,j∈Vc

`
wij∑

i∈V`
di

, (50)
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where di =
∑
j∈V wij is the degree of a vertex i. For each term in the summation of this objective function,

the numerator
∑
i∈V`,j∈Vc

`
wij is the sum of the weights of edges crossing the partition V` and its complement

Vc` , while the denominator
∑
i∈V`

di is the “size” of the partition V`.
If we define an n× k matrix Z whose `-th column is a cluster indicator of the partition V`, i.e.,

Z(j, `) =

{
1/
√∑

i∈V`
di if j ∈ V`

0 otherwise,
(51)

then the cost function is exactly the trace of the matrix ZTLZ:

F(V1, . . . ,Vk) = Tr (ZTLZ),

with Z satisfying
ZTDZ = I,

where L (the graph Laplacean) and D are defined as before. Therefore, the clustering problem stated above
can be formulated as the problem of finding a matrix Z in the form of (51) such that Tr (ZTLZ) is minimum
and ZTDZ = I. This being a hard problem to solve, one usually considers a heuristic which computes a
matrix Z that is no longer restricted to the form (51), so that the same two conditions are still satisfied. With
this relaxation, the columns of Z are known to be the k smallest eigenvectors of the generalized eigenvalue
problem

Lzi = λiDzi. (52)

The above solution Z has a natural interpretation related to Laplacean Eigenmaps. Imagine that there is
a set of high dimensional data samples lying on a manifold. We perform dimension reduction on these data
samples using the Laplacean Eigenmaps method. Then Z is the low dimensional embedding of the original
manifold, that is, each sample on the manifold is mapped to a row of Z, in the k-dimensional space. Thus,
a good clustering of Z in some sense implies a reasonable clustering of the original high dimensional data.

It is worthwhile to mention that by slightly modifying the cost function (50) we can arrive at a similar
spectral problem. For this, consider minimizing the objective function

F̂(V1, . . . ,Vk) =
k∑
`=1

∑
i∈V`,j∈Vc

`
wij

|V`| . (53)

Comparing (53) with (50), one sees that the only difference in the objective is the notion of “size of a subset”:
here the number of vertices |V`| is used to measure the size of V`, while in (50) this is replaced by the sum
of the degree of the vertices in V`, which is related to the number of edges. Similar to the original problem,
if we define the matrix Ẑ as

Ẑ(j, `) =

{
1/
√|V`| if j ∈ V`

0 otherwise,

then we get the following two equations:

F̂(V1, . . . ,Vk) = Tr (ẐTLẐ), ẐT Ẑ = I.

The cost function (53) is again hard to minimize and we can relax the minimization to obtain the eigenvalue
problem:

Lẑi = λ̂iẑi. (54)

The partitioning resulting from minimizing the objective function (53) approximately via (54) is called
the ratio cut [20]. The one resulting from minimizing (50) approximately via (52) is called the normalized
cut [45]. We will refer to the problem of finding the ratio cut (resp. finding the normalized cut), as the
spectral ratio cut problem, (resp. spectral normalized cut problem). Finding the ratio cut amounts to solving
the standard eigenvalue problem related to the graph Laplacean L, while finding the normalized cut is
equivalent to solving the eigenvalue problem related to the normalized Laplacean L̂ = D−1/2LD−1/2. This
connection results from different interpretations of the “size of a set”. The second smallest eigenvector ẑ2 (the
Fiedler vector [15, 16]) of L plays a role similar to that of vector z2 described above. Since Z is the standard
low dimensional embedding of the manifold in the high dimensional ambient space, a natural question is: Is Ẑ
also a good embedding of this manifold? As will be seen in Section 8.2, Ẑ is the low dimensional embedding
of a “kernel” version of PCA that uses an appropriate kernel.
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7.6. Unifying Framework

We now summarize the various connections that we have drawn so far. The objective functions and the
constraints imposed on the optimization problems seen so far are shown in Table I. As can be seen, the
methods can be split in two classes. The first class, which can be termed a class of ‘implicit mappings’,
includes LLE, Laplacean Eigenmaps and ISOMAP. Here, one obtains the low-dimensional data set Y by
solving an optimization problem of the form,

min8<: Y ∈ Rd×n
Y BY T = I

Tr
[
Y AY T

]
(55)

where B is either the identity matrix (LLE) or the matrix D (Eigenmaps). For LLE the matrix A is
A = (I −WT )(I −W ) and for Eigenmaps, A is the Laplacean matrix.

Method Object. (min) Constraint

LLE Tr [Y (I −WT )(I −W )Y T ] Y Y T = I

Eigenmaps Tr [Y (D −W )Y T ] Y DY T = I

PCA/MDS Tr [−V TX(I − 1
n11T )XTV ] V TV = I

LPP Tr [V TX(D −W )XTV ] V TXDXTV = I

OLPP Tr [V TX(D −W )XTV ] V TV = I

NPP Tr [V TX(I −WT )(I −W )XTV ] V TXXTV = I

ONPP Tr [V TX(I −WT )(I −W )XTV ] V TV = I

LDA Tr [V TX(I −H)XTV ] V TXXTV = I

Spect. Clust. (ratio cut) Tr [ZT (D −W )Z] ZTZ = I

Spect. Clust. (normalized cut) Tr [ZT (D −W )Z] ZTDZ = I

Table I. Objective functions and constraints used in several dimension reduction methods.

The second class of methods, which can be termed the class of ‘projective mappings’ includes PCA/MDS,
LPP, ONPP, and LDA, and it can be cast as an optimization problem of the form

min8<: V ∈ Rm×d
V T B V = I

Tr
[
V TXAXTV

]
. (56)

Here, B is either the identity matrix (ONPP, PCA) or a matrix of the form XDXT or XXT . For ONPP, the
matrix A is the same as the LLE matrix (I−W )(I−WT ), and for LPP, A is a Laplacean graph matrix. For
LDA, A = I −H. For PCA/MDS the largest eigenvalues are considered so the trace is maximized instead of
minimized. This means that we need to take A to be the negative identity matrix for this case. In all cases
the resulting V matrix is the projector, so Y = V TX is the low-dimension data. Figure 9 shows pictorially
the relations between the various dimension reduction methods.

8. Kernels

Kernels have been extensively used as a means to represent data by mappings that are intrinsically nonlinear,
see, e.g., [30, 48, 39, 44]. Kernels are based on an implicit nonlinear mapping Φ : Rm → H, where H is a
certain high-dimensional feature space. Denote by Φ(X) = [Φ(x1),Φ(x2), . . . ,Φ(xn)] the transformed data
set in H. We will also use Φ (a matrix) as a shorthand notation for Φ(X) when there is no risk of confusion
with the mapping.
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Ŵ
=
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(I −WT )(I −W ) vs. I − Ŵ

Figure 9. Relations between the different dimension reduction methods.

The Moore-Aronszajn theorem [1] asserts that every symmetric positive definite kernel is associated with
a dot product defined on some Hilbert space. As a result, for finite samples X, the transformation Φ need
only be known through its Grammian, which is symmetric positive (semi-)definite, on the data X. In other
words, what is known is the matrix K whose entries are

Kij ≡ k(xi, xj) = 〈Φ(xi),Φ(xj)〉. (57)

This is the Gram matrix induced by the kernel k(x, y) associated with the feature space. In fact, another
interpretation of the kernel mapping is that we are defining an alternative inner product in the X-space,
which is expressed through the inner product of every pair (xi, xj) as 〈xi, xj〉 = kij .

Formally, any of the techniques seen so far can be implemented with kernels as long as its inner workings
require only inner products to be implemented. In the sequel we denote by K the kernel matrix:

K ≡ Φ(X)TΦ(X) = [ki,j ]i,j=1,··· ,n = [Φ(xi)TΦ(xj)]i,j=1,··· ,n . (58)

8.1. Explicit mappings with kernels

Consider now the use of kernels in the context of the ‘projective mappings’ seen in Section 7.6. These compute
a projection matrix V by solving an optimization problem of the form (56). Formally, if we were to work in
feature space, then X in (56) would become Φ, i.e., the projected data would take the form Y = V TΦ. Here
V ∈ RN×d, where N is the (typically large and unknown) dimension of the feature space.

The cost function (56) would become
Tr
[
V TΦAΦTV

]
, (59)

where A is one of the matrices defined earlier for each method. We note in passing that the matrix A, which
should capture local neighborhoods, must be based on data and distances between them in the feature space.

Since Φ is not explicitly known (and is of large dimension) this direct approach does not work. However,
as was suggested in [25], one can exploit the fact that V can be restricted (again implicitly) to lie in the
span of Φ, since V must project Φ. For example, we can implicitly use an orthogonal basis of the span of Φ
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via an implicit QR factorization of Φ, as was done in [25]. In the following, this factorization is avoided for
simplicity.

8.2. Kernel PCA

Kernel PCA, see, e.g., [41], corresponds to performing classical PCA on the set {Φ(xi)}. Using Φ̄ to denote
the matrix [Φ(x̄1), . . . ,Φ(x̄n)], this leads to the optimization problem:

max Tr [V T Φ̄Φ̄TV ] subject to V TV = I .

¿From what was seen before, we would need to solve the eigenvalue problem

Φ̄Φ̄Tui = λui,

and the projected data will be Y = [u1, . . . , ud]T Φ̄.
The above problem is not solvable as is because the matrix Φ̄Φ̄T is not readily available. What is available

is the Grammian Φ̄T Φ̄. This suggest the following right singular vector approach. We multiply both sides of
the above equation by Φ̄T , which yields:

[Φ̄T Φ̄]︸ ︷︷ ︸
K̄

Φ̄Tui = λiΦ̄Tui

We stated above that the matrix K̄ is available – but in reality since the Φi are not explicitly available we
cannot recenter the data in feature space. However, there is no real issue because K̄ can be expressed easily
from K since K̄ = Φ̄T Φ̄ = (I − 1

n11T )K(I − 1
n11T ), see [30].

Recall that Y = V T Φ̄, where V = [u1, · · · , ud], so the vectors Φ̄Tui in the above equation are just the
transposes of the rows of the low-dimensional Y . In the end, the rows of Y , when transposed, are the largest
d eigenvectors of the Gram matrix. In other words, Y is obtained by solving the largest d eigenvectors of the
system

K̄zi = λizi, [z1, . . . , zd] = Y T . (60)

It is interesting to compare this problem with the one obtained for the spectral ratio cut (54): the columns
of Y T (n-vectors) are the smallest eigenvectors of the Laplacean matrix L. Hence, it is clear that the spectral
ratio cut problem can be interpreted as Kernel PCA with the kernel matrix K = L† [21, 17].

Proposition 8.1. The kernel version of PCA, using the kernel matrix K = L†, is mathematically equivalent
to the spectral ratio cut problem in feature space.

8.3. Kernel LPP

To define a kernel version of LPP, we can proceed similarly to PCA. Denote again by Φ the system Φ ≡ Φ(X),
and let K ≡ ΦTΦ, which is assumed to be invertible. The problem (28) for LPP in feature space is

min
V

Tr
[
V TΦLΦTV

]
Subj. to V TΦDΦTV = I,

which leads to the eigenvalue problem:

ΦLΦTui = λiΦDΦTui .

Again this is not solvable because the matrices ΦLΦT and ΦDΦT are not available.
Proceeding in the same was as for PCA, and assuming for simplicity that Φ is of full rank, we can left-

multiply by ΦT , then by K−1, and recalling that Y = V TΦ, we obtain Y T = [z2, . . . , zd+1] where

Lzi = λiDzi. (61)

One may be puzzled by the remarkable fact that the Grammian matrix K no longer appears in the equation.
It is important to recall however, that the information about distances must already be reflected in the
Laplacean pair (L,D). This fact is discussed in more detail in [22].
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Proposition 8.2. The kernel version of LPP is mathematically equivalent to Laplacean eigenmaps in feature
space.

We note that this is in fact a practical equivalence as well, i.e., the computational problems at which the
two methods arrive are the same. What appeared to be a nonlinear method (eigenmaps) becomes a linear
one using a kernel.

An immediate question is: do we explicitly know the related mapping? In [6], an infinite dimensional
operator was used as a means to define out-of-sample extensions of various nonlinear methods. All that is
needed is to find a continuous kernel k(x, y) whose discretization gives rise to the discrete kernel k(xi, xj).

8.4. Kernel ONPP

The kernel version of ONPP seeks to minimize the function

min
V ∈ RN×d, V TV=I

[
V TΦMΦTV

]
(62)

which leads to the eigenvalue problem:
ΦMΦTui = λiui. (63)

We now again multiply by ΦT to the left and note as before K = ΦTΦ, and that the solution Y is such that
Y T = ΦT [u2, . . . , ud+1]. This leads to the eigenvalue problem

KMzi = λizi or MzTi = K−1zTi , [z2, . . . , zd+1] = Y T (64)

whose solution is the set of eigenvectors of the matrix M but with a different orthogonality constraint,
namely the K−1-orthogonality. In other words, the rows of the projected data Y can be directly computed
as the (transposed) eigenvectors of the matrix KM associated with the smallest d eigenvalues.

Though the matrix KM in (64) is nonsymmetric, the problem is similar to the eigenvalue problem
Mz = λK−1z and therefore, the eigenvectors are orthogonal with respect to the K−1-inner product, i.e.,
zTi K

−1zj = δij . This can also be seen by introducing the Cholesky factorization of K, K = RRT and setting
ẑ = R−1z. The set of ẑ’s is orthogonal.

It is also useful to translate the optimization problem corresponding to the eigenvalue problem (64) for
the Y variable. Clearly Kernel ONPP solves the optimization problem:

min8<: Y ∈ Rd×n
Y K−1Y T = I

Tr
[
YMY T

]
. (65)

This new problem is again in Rn. In practice, there is still an issue to be resolved with this new setting,
namely we need a matrix M = (I −WT )(I −W ) which is determined for the samples in feature space. In
other words the affinity matrix W should be for the samples Φ(xi) not the xi’s. Again this is easily achievable
because the method for constructing W only requires local Grammians, which are available from K; see [24]
for details.

We now address the same question as the one asked for the relation between LPP and eigenmaps in feature
space. The question is whether or not performing LLE in feature space will yield the kernel version of ONPP.
Clearly, the problem (65) to which we arrive with kernel ONPP does not resemble the optimization problem
of LLE. This is easy to understand: ONPP uses an orthogonal projection while LLE requires the embedded
data to be orthogonal. If we were to enforce the same orthogonality on the yi’s as in LLE we might obtain
the same result, and this is indeed the case.

Recall that we defined this option in Section 4.5 and called it NPP. Consider this alternative way of
defining ONPP and referred to as NPP in Section 4.5. Proceeding as above, one arrives at the following
optimization problem for Kernel NPP:

min
V ∈ RN×d, V T ΦΦTV=I

[
V TΦMΦTV

]
which leads to the eigenvalue problem:

ΦMΦTui = λiΦΦTui.
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Multiplying by ΦT and then by K−1, we arrive again at the following problem from which the kernel matrix
K has again disappeared:

MΦTui = λiΦTui → Mzi = λizi (66)

The projected data is now identical with that obtained from LLE applied to Φ.

Proposition 8.3. Kernel NPP is equivalent to LLE performed in feature space.

Figure 10 summarizes pictorially the relations that have been revealed in this section.

Kernel NPP Kernel LPP Kernel PCA

LLE
Eigenmaps /

Normalized cut Ratio cut

eq
ui

va
le

nt

eq
ui

va
le

nt

K
=

L
†

Figure 10. Kernel methods and their equivalents.

It is interesting to note that kernel methods tend to use dense kernels—as these are commonly defined
as integral operators. Graph Laplaceans on the other hand are sparse and represent inverses of integral
operators. This is just the same situation one has with operators on Hilbert spaces: kernel operators are
compact operators which when discretized yield dense matrices (e.g., by the Nystrom method), and their
inverses are partial differential operators which when discretized yield sparse matrices.

8.5. What about LLE and Eigenmaps?

In principle, it would be perfectly possible to implement kernel variants of LLE and eigenmaps - since these
require constructions of neighborhood matrices which can be adapted by using distances obtained from
some Grammian K. However, this would be redundant with the nonlinear nature of LLE/eigenmaps. To
understand this it is useful to come back to the issue of the similarity of LLE with Kernel ONPP. Comparing
the two methods, one observes that the eigenvalue problems of the projective methods (PCA, LPP, ONPP,..)
are m ×m problems, i.e., they are in the data space. In contrast, all kernel methods share with LLE and
eigenmaps the fact that the eigenproblems are all n × n. Thus, none of the eigenvalue problems solved
by Kernel PCA, Kernel LPP, and Kernel ONPP involves the data set X explicitly, in contrast with those
eigenvalue problems seen for the non-kernel versions of the same methods. Compare for example (29) for the
standard LPP with (61) for Kernel LPP or the problems (24) and (60) for PCA and kernel PCA. In essence,
the data is hidden in the Gram matrix K (or its Cholesky factor R) for PCA, and/or the Laplacean pair
L,D for LPP. In effect, one can consider that there is only one big class of methods which can be defined
using various kernels.

We conclude that the linear and nonlinear families of methods can be brought together thanks to the use
of kernels. The observation that kernels can help unify dimension reduction has been made before. Ham et
al. [21] note that several of the known standard methods (LLE [34], Isomap [46], Laplacean eigenmaps [4, 5])
can be regarded as some form of Kernel PCA. In [24], it was observed that linear and nonlinear projection
methods are in fact equivalent, in the sense that one can define one from the other with the help of kernels.
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Figure 11. Original figure (top-left) and results of projections using kernels with different values of σ

8.6. The kernel effect: A toy example

To illustrate the power of kernels, it is best to take a small artificial example. We randomly draw 250 points
from a square of width 1.5 centered at the origin, and 250 additional points from an annulus surrounding
the square. In particular, the annulus is defined as the region between a half disk of radius 3.5 and a half
disk of radius 4.5, both centered at [1, 0]. This is shown in the first plot of Figure 11. The figure is in 2-D.
The line shown in this first figure shows how a method based on PCA (called PDDP, see [9]) partitions the
set. It fails to see the two distinct parts. In fact any linear separation will do a mediocre job here because
the two sets cannot be partitioned by a straight line. What we do next is use kernels to transform the set.
In fact the experiment is unusual in that we take the 2-D set and project it into a 2-D set with Kernel PCA.
Recall that this is equivalent to eigenmaps with the Grammian matrix replacing the usual graph Laplacean.
The method amounts to simply taking the kernel K̄ (see Section 8.2 and equation (60)) and computing its
largest 2 eigenvectors. This yields two vectors which after transposition yield the projected data Y . Since
the dimensions of X and Y are the same there is no dimension reduction per se, but the projection will
nevertheless show the effect of kernels and illustrate how they work.

We use a Gaussian (or heat) kernel which we write in the form K(x, y) = exp(−‖x − y‖22/σ2). This is
a very popular kernel, see, e.g., [40]. One of the difficulties with this kernel is that it requires finding a
good parameter σ. It is often suggested to select a value of σ equal to half the median of pairwise distances
obtained from a large sample of points. In our case, we use all the 500 points for this purpose and call σ0

the corresponding optimal value. In the experiment we use several values of σ around this pseudo-optimal
value σ0. Specifically we take σ2 of the form σ2

0/C where C takes the values: C = 3, 2, 1, 0.5, 0.2. The results
of the related KPCA projections are shown in Figure 11.

When the parameter C takes values of 0.1 (σ2 ≈ 27.46..) and smaller, the resulting figures start to very
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much resemble the original picture. These are omitted. This experiment reveals a number of features of
kernel methods in general and this kernel in particular. When σ is large (C in the experiment is small), then
inner-products become basically close to being constant (constant one) and so the Grammian will then be
similar to the trivial one seen for PCA. This means we will tend to get results similar to those with standard
PCA, and this is indeed what is observed. For smaller values of σ the situation is quite different. In this
case, large pairwise squared distances ‖x− y‖2 are amplified and the negative exponential essentially makes
them close to zero. This has the effect of ‘localizing’ the data. For σ = σ0, (leftmost figure in second row),
the separation achieved between the two sets is quite remarkable. Now an algorithm such as K-means (see,
e.g., [50]) can do a perfect job at identifying the two clusters (provided we know there are two such clusters)
and a linear separation can also be easily achieved. This is a major reason why linear methods are not to
be neglected. Note that as σ increases, the set corresponding to the annulus expands gradually from a very
densely clustered set to one which reaches a better balance with the other set (for σ0 for example). This can
be explained by the fact that pairwise distances between points of the annulus are larger than those of the
square.

9. Illustrative examples

The goal of this section is to demonstrate the behavior of the methods just seen on a few simple examples.

9.1. Projecting digits in 2-D space

Figure 12 shows the results of dimension reduction on a data set of handwritten digits (‘0’–‘9’) [2] which
consists of 200 samples per digit. Each sample was originally represented as a 649-dimensional feature vector,
including the Fourier coefficients, profile correlations, Karhunen-Love coefficients, pixels averages, Zernike
moments, and morphological features. Due to the huge differences between the numeric ranges of the features,
we normalize each feature such that the maximum value is one.

Here are the main observations from these plots. First, the supervised method LDA does well in separating
the samples of different classes, as compared with the unsupervised method PCA. Both methods take into
account the variances of the samples, but LDA makes a distinction between the “within scatter” and
“between scatter”, and outperforms PCA in separating the different classes. Second, both in theory and
in practice, LLE and Eigenmaps share many similarities. For the present data set, both methods yield
elongated and thin clusters. These clusters stretch out in the low dimensional space, yet each one is localized
and different clusters are well separated. Our third observation concerns NPP and LPP, the linear variants of
LLE and Eigenmaps, respectively. The methods should preserve locality of each cluster just as their nonlinear
counterparts. They yield bigger cluster shapes instead of the “elongated and thin” ones of their nonlinear
counterparts. The fourth observation is that ONPP and OLPP, the orthogonal variants of NPP and LPP,
yield poorly separated projections of the data in this particular case. The samples of the same digit are
distributed in a globular shape (possibly with outliers), but for different digits, samples just mingle together,
yielding a rather undesirable result. Although the orthogonal projection methods OLPP and ONPP do quite
a good job for face recognition (see Section 9.3.2, and results in [24]) they yield poor 2-D projections in
this case. A possible explanation is that we are projecting data from a high dimensional space to a space of
dimension only two, whereas face recognition methods utilize much higher dimensions in order to successfully
classify faces. The problem is also intrinsically different. In the current situation we are trying to visualize
a clustering of many data items on a 2-D plane, whereas in classification we use the projected d-dimension
data to compare a test image to other images, which are labeled. The visual clustering of the data when
projected in 2-D space does not matter.

9.2. Effect of kernelization

We consider the same data set as in Section 9.1, but now fewer digits are taken for each experiment.
Specifically, we look at digits that are usually more difficult to distinguish, and we select first the three
digits ‘5’, ’8’ and ’9’. We consider only two methods here, namely PCA and OLPP, and their kernel versions,
K-PCA and K-OLPP.
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(a) PCA (b) LDA

(c) LLE (d) NPP (e) ONPP

(f) Eigenmaps (g) LPP (h) OLPP

0 1 2 3 4 5 6 7 8 9

Figure 12. Low dimensional (2D) representations of handwritten digits.

For the kernel version we use the same Gaussian kernel K(x, y) = exp(−‖x−y‖22/σ2) as in Section 8.6. As
suggested in Section 8.6, the parameter σ is selected to be half the median of all pairwise distances obtained
from a random sample of 1000 points‖. This typically results in a reasonable estimate of the best σ.

The improvement seen from the standard versions to the kernel versions is striking. Clearly, not all values
of σ will yield a good improvement. For example when we tried taking four digits, the results for basically
any σ were rather poor for this particular data set.

The next test example uses another digit data set, one which is publicly available[73]. This data set contains
39 samples from each class (the digits ’0’-’9’). Each digit image sample is represented lexicographically as a
vector in space R320 and consists of zeros and ones. Figure 15 shows a random sample of 20 such pictures
(20 pictures randomly selected out of the whole set of 390 pictures ). As can be seen a few of the prints are
rather difficult to decipher.

We repeat the previous experiment but this time we select four digits: 1, 3, 7, 9. The results are shown in

‖If the data set contains fewer than 1000 samples then all samples are used.
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Figure 13. PCA and K-PCA for digits 5, 8, and 9 of data set mfeat
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Figure 14. OLPP and K-OLPP for digits 5, 8, and 9 of data set mfeat
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Figure 15. A sample of 20 digit images from the Roweis data set

Figures 16 and 17. The kernel used here is the same as before. Since our set is not too large (156 images in
all) we simply took σ to be equal to the half the median of all pairwise distances in the set. The value of σ
found in this way is shown in the corresponding plots.
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Figure 16. PCA and K-PCA for digits 1, 3, 7, 9 of the Roweis digits data set
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Figure 17. OLPP and K-OLPP for digits 1, 3, 7, 9 of the Roweis digits data set

Figure 18. Sample from the UMIST database.

The improvement seen from the standard versions to the kernel versions is remarkable. Just as before, not
all values of σ will yield a good improvement.

9.3. Classification experiments

In this section we illustrate the methods discussed in the paper on two different classification tasks, namely,
digit recognition and face recognition. Recall from Section 5 that the problem of classification is to determine
the class of a test sample, given the class labels of previously seen data samples (i.e., training data). Table
II summarizes the characteristics of the data sets used in our evaluation. For digit recognition, we use the
mfeat and Roweis data sets that were previously used in Sections 9.1 and 9.2. For face recognition, we use
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Data set No of classes No of samples per class
mfeat 10 200
Roweis 10 39
UMIST 20 19-48
ORL 40 10
AR 126 8

Table II. Data sets and their characteristics.

Figure 19. Sample from the ORL database.

Figure 20. Sample from the AR database.

the UMIST [18], ORL [36] and AR [29] databases. We provide more information below.

• The UMIST database contains 20 people in different poses. The number of different views per subject
varies from 19 to 48. We used a cropped version of the UMIST database that is publicly available [73].
Figure 18 illustrates a sample subject from the UMIST database along with its first 20 views.
• The ORL database contains 40 individuals and 10 different images for each individual including

variation in facial expression (smiling/non smiling) and pose. Figure 19 illustrates two sample subjects
of the ORL database along with variations in facial expression and pose.
• The AR face database contains 126 individuals and 8 different images for each individual including

variation in facial expression and lighting. Figure 20 illustrates two sample subjects of the AR database
along with variations in facial expression and lighting.

In all graph-based methods we use supervised graphs, see Section 5.1. In the LPP and OLPP methods we
use Gaussian weights, see Sections 8.6 and 9.2. The parameter σ is determined as described in Section 9.2.
Finally, we should mention that the above methods have been pre-processed with a preliminary PCA
projection step. The PCA projection is used in order to reduce the dimension of the data vectors to ntrain−c,
where ntrain is the number of training samples (see e.g., [25, 24]). In what follows we discuss first recognition
of handwritten digits and then face recognition. In both tasks, recognition is done in the reduced space, after
dimension reduction, using nearest neighbor classification.

9.3.1. Handwritten digit recognition This problem is of great practical importance to postal and delivery
services around the world. The number of classes here is c = 10. We compare the linear dimension reduction
methods discussed in this paper. We use 50 and 15 training samples per class in the mfeat and Roweis data
sets respectively. The rest of samples are assigned to the test set.

Figure 21 shows the average classification error rate of all methods with respect to the dimension d of the
reduced space. The averages are computed over 100 random formations of the training and test sets. Note
that for LDA we only report the average performance at d = c − 1, as it cannot provide more than c − 1
discriminant axes.
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Figure 21. Handwritten digit recognition. Left panel: mfeat data set and right panel: Roweis data set.
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Figure 22. Face recognition results on the ORL (left) and UMIST(right) data sets.

First, observe that the performance of LPP parallels that of NPP. This is mostly due to Proposition 7.2,
although in this case the relation W = Ŵ = H is not exactly true, due to the different weights used in each
method (i.e., Gaussian weights in LPP and LLE weights in NPP). Second, notice that the orthogonal methods
i.e., PCA, ONPP and OLPP offer the best performances and significantly outperform the non-orthogonal
ones.

9.3.2. Face recognition The problem of face recognition is somewhat similar to the one just described for
digit recognition. We want now to recognize subjects based on facial images. Face recognition has numerous
applications such as surveillance, automated screening, authentication and human-computer interaction, to
name just a few.

We use 5, 10 and 5 training samples per class in the ORL, UMIST and AR data sets respectively, while
the rest of samples are assigned to the test set. Figures 22 and 23 show the average classification error rates
of all methods on the above three data sets. The averages are computed over 100 random formations of
the training and test sets. As was previously done, for LDA we only report the average performances up to
d = c − 1. Notice again that the orthogonal methods are in general superior to the non-orthogonal ones.
Observe also that the orthogonal graph-based methods, ONPP and OLPP, are the best performers for the
face recognition task.

One reason why orthogonal projection methods do well for classification may be that distances are not
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Figure 23. Face recognition results on the AR data set.

too distorted when projecting data. Indeed ‖V T (x− y)‖ ≤ ‖x− y‖, and in fact this distance may be fairly
accurate for points belonging to X due to the choice of V (e.g., when columns of V consist of the singular
vectors of X as in PCA).

10. Beyond spectral methods and trace optimization

While this paper focused on dimension reduction based on spectral techniques and trace optimization, other
existing powerful methods rely on convex optimization with constraints. This section briefly describes two
examples in this class for illustration purposes. For a recent survey of these techniques see [7].

Possibly the best known technique along these lines in supervised learning is the method of Support
Vector Machines (SVM); see [8, 12, 48]. It is in spirit similar to LDA (cf. Section 5.2) in that it finds a one
dimensional projection to separate the data in some optimal way. Formally, the SVM approach consists of
finding a hyperplane which best separates two training sets belonging to two classes. If the hyperplane is
wTx + b = 0, then the classification function would be f(x) = sign(wTx + b). This will assign the value
y = +1 to one class and y = −1 to the other, and it is capable of perfectly separating the two classes in
ideal situations when the classes are linearly separable.

One of the key ingredients used by SVM is the notion of margin, which is the distance between two parallel
support planes for the two classes. First, observe that the parameters w, b can be normalized by looking for
hyperplanes of the form wTx+b ≥ 1 to include one set and wTx+b ≤ −1 to include the other. With yi = +1
for one class and yi = −1 for the other, we can write the constraints as yi(wTxi + b) ≥ 1. The margin is the
maximum distance between two such planes. SVM finds w, b so that the margin is maximized.

Therefore, SVM finds the best separating hyperplane (middle of the two support planes) by maximizing
the margin subjected to the constraint yi(wTxi + b) ≥ 1. As it turns out the margin is given by γ = 2/‖w‖2.
(Figure 24 shows an illustration.) This leads to the following constrained quadratic programming problem:

min
w.b

1
2
‖w‖22

s.t. yi(wTxi + b) ≥ 1, ∀xi.
Often the dual problem is solved instead of the above primal problem. In case the two classes are not
separable, the constraint is relaxed by introducing slack variables. In addition, the problem is often solved
in ‘feature space’, meaning simply that a kernel is used to redefine the inner product to enable a linear
separation of the two classes.

There are several other types of optimization problems involving Semi-Definite Programming, in which
the optimization problem involves matrices which are constrained to be semi positive definite. Maximum
Variance Unfolding (MVU) is one such example; see [52, 53]. Assume we have a certain affinity graph

Copyright c© 200 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 200; 0:0–0
Prepared using nlaauth.cls



33

γ

Figure 24. Illustration of the margin in SVM.

available. We could wish to find a set of centered samples in low-dimensional space (constraint:
∑
i yi = 0)

which maximize the variance
∑
i ‖yi‖22 with the constraint that ‖yi − yj‖2 = ‖xi − xj‖2 whenever (xi, xj)

are linked by an edge. This is a quadratic programming problem with quadratic constraints. It is possible to
provide a solution in terms of the matrix Grammian of the low-dimensional data, i.e., K = Y TY . This then
leads to the following semi-definite program:

Maximize
∑
i

Kii subject to


(i) Kii +Kjj − 2Kij = ‖xi − xj‖22 if (xj , xj) ∈ E
(ii)

∑
ij Kij = 0

(iii) K � 0

Once the matrix K is found, one computes Y of dimension d × n such Y TY = K and this involves a
diagonalization of K.

We have given just two examples (one supervised, one unsupervised) of methods involving more complex
techniques (i.e., optimization) than those methods seen in earlier sections, which were based on (projected)
eigenvalue problems. Many other convex optimization formulations have been discussed in, e.g., [57, 58, 3].
We point out that these optimization methods tend to be far more expensive than spectral methods and
this limits their capability for handling large scale problems. For this reason, simpler techniques resorting to
spectral problems are sometimes preferred. Realistic large scale systems can have millions or even billions
of variables and constraints and this puts them out of reach of the methods based on these sophisticated
optimization techniques. A common alternative in such situations is to perform sampling on the data and
reduce the problem size. This is the case for MVU, where a landmark version [51] was proposed if the sample
size becomes large. Yet another alternative is to apply heuristics and/or to relax the constraints in order
to find approximate solutions. In contrast, as long as the matrix is sparse, eigenvalue problems can still be
efficiently solved.

11. Conclusion

This paper gave an overview of spectral problems which arise in dimension reduction methods, with an
emphasis on the many interrelations between the various approaches used in the literature. These dimension
reduction methods are often governed by a trace optimization problem with constraints, along with some
data locality criteria. When viewed from this angle, and with the help of kernels, one can easily define
a comprehensive unifying framework for dimension reduction methods. The illustrative examples shown
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indicate that in spite of their seemingly similar nature, these methods can perform very differently for a
given task.

Many challenging issues remain for a linear algebra specialist interested in this topic to explore. For
example, although kernels are indeed very powerful, we do not know how to select them (optimally) for a
specific data set and problem. Moreover, kernel methods lead to large n×n matrices, typically dense, which
are difficult to handle in practice. This leads to a broader issue that remains a problem in this area, namely
the general question of computational cost. Methods considered in the literature so far have often relied on
very expensive matrix factorizations, the most common being the SVD. In view of the ever-increasing sizes
of practical data sets, it has now become critical to search for less costly alternatives.
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65. M. Sugiyama, T. Idé, S. Nakajima, and J. Sese. Semi-supervised local Fisher discriminant analysis for dimensionality
reduction. PAKDD, pages 333–344, 2008.

66. H. Wang, S. Yan, D. Xu, X. Tang, and T. S. Huang. Trace ratio vs. ratio trace for dimensionality reduction. IEEE Int.
Conf. on Computer Vision and Pattern Recognition (CVPR), 2007.

67. X. Yang, H. Fu, H. Zha, and J. Barlow. Semi-supervised nonlinear dimensionality reduction. 23rd International Conference
on Machine Learning (ICML), 2006.

68. D. Zhang, Z.-H. Zhou, and S. Chen. Semi-supervised dimensionality reduction. SIAM Data Mining, pages 629–634, 2007.
69. Y. Zhang and D.-Y. Yeung. Semi-supervised discriminant analysis using robust path-based similarity. IEEE International

Conference on Computer Vision and Pattern Recognition (CVPR), 2008.
70. Y. Zhang and D.-Y. Yeung. Semi-supervised discriminant analysis via CCCP. ECML/PKDD, pages 644–659, 2008.
71. Z. Zhang, H. Zha, and M. Zhang. Spectral methods for semi-supervised manifold learning. IEEE International Conference

on Computer Vision and Pattern Recognition (CVPR), 2008.
72. I.T. Jolliffe. Principal Component Analysis. Springer Verlag, New York, 1986.
73. http://www.cs.toronto.edu/∼roweis/data.html

Copyright c© 200 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 200; 0:0–0
Prepared using nlaauth.cls


